WORKSHEET #1

Name:	Date:	Period:	Seat #:
Show all work Consider the reduction potential chart. Find and copy the	reduction equatior	as for $Ag^+ \rightarrow Ag^\circ$ and $Pb^{2+} \rightarrow Pb^\circ$	
Silver reduction equation:			Potential Value: E° =
Lead reduction equation:			Potential Value: E° =
1. Which metal ion has the greater reduction potential?		metals (and their solutions) were used al would be the anode?	l to create a galvanic
3. Write the reaction at the anode:	4. Write the read	ction at the cathode:	
5. What is the overall reaction?	6. What would b	be the voltage of the standard electro	chemical cell?
7. How many moles of electrons are involved in this reaction? n =	8. Find and copy	y down the Nernst Equation:	
9. If the standard cell is allowed to run until the [Ag ⁺] = (greater / less)?	0.50 M, the [Pb ²⁺]	= 2.0 M, the cell voltage will be	
10. Use the Nernst equation to calculate the cell voltage	with these new co	encentrations	